%%%% THIS FILE IS AUTOMATICALLY GENERATED
%%%% DO NOT EDIT THIS FILE DIRECTLY,
%%%% ONLY EDIT THE SOURCE, tom-46/document.tex.
%%%%
%% Standard package list
\documentclass[letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry}
\usepackage[onehalfspacing]{setspace}
\usepackage{amsmath,amssymb,amsthm,wasysym}
\usepackage{nicefrac,booktabs}
\usepackage{mathptmx}
\usepackage{cite}
\usepackage[colorlinks=true]{hyperref}
%% Various helpers for Tom's papers
\newcommand{\gs}{\textnormal{gs}}
\newcommand{\ord}{\textnormal{ord}}
\newcommand{\Exp}{\textnormal{Exp}}
\newcommand{\Log}{\textnormal{Log}}
\newcommand{\lcm}{\textnormal{lcm}}
\newcommand{\range}{\textnormal{range}}
\newcommand{\NR}{\textnormal{NR}}
\newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)}
\newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle}
\newcommand{\summ}[1]{\sum_{k=1}^m{#1}}
\newcommand{\bt}[1]{{{#1}\mathbb{N}}}
\newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}}
\newcommand{\intv}[1]{{\left[1,{#1}\right]}}
%% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name
%% This lets me do things like "Theorem A" and have the references work properly.
\makeatletter
\let\@old@begintheorem=\@begintheorem
\def\@begintheorem#1#2[#3]{%
\gdef\@thm@name{#3}%
\@old@begintheorem{#1}{#2}[#3]%
}
\def\namedthmlabel#1{\begingroup
\edef\@currentlabel{\@thm@name}%
\label{#1}\endgroup
}
\makeatother
% end lift
\newtheoremstyle{namedthrm}
{}{}{}{}{}{}{ } % This last space needs to be there
{\bf\thmname{#1} \thmnote{#3}.}
%% End reference hack
%% Document start
\date{}
\begin{document}
%% Content start
\newtheorem{cor}{Corollary}
\newtheorem{corn}{Corollary to Lemma 1}
\newtheorem{lemma}{Lemma}
\newtheorem*{sub}{Sublemma}
\newtheorem{thm}{Theorem}
\newtheorem*{prop}{Proposition}
\newtheorem{q}{Problem}
\theoremstyle{definition}
\newtheorem{defn}{Definition}
\newtheorem{fact}{Fact}
\newtheorem*{claim}{Claim}
\newtheorem{remark}{Remark}
\newtheorem*{remarkk}{Remark}
\newtheorem*{app}{Applications}
\newtheorem*{conj}{Conjecture}
\newcommand{\diam}[1]{\textup{Diam} #1}
\title{Some Quantitative Aspects of Szemer\'edi's Theorem Modulo $n$}
\author{T. C. Brown}
\date{}
\maketitle
\begin{center}{\small {\bf Citation data:} T.C. Brown, \emph{Some quantitative aspects of Szemer\'edi's theorem modulo
$n$}, congressus Numerantium \textbf{43} (1984), 169--174.}\bigskip\end{center}
\begin{abstract}
The multiset $P = \{a_1,\dots,a_k\}$ is a $k$-term arithmetic progression modulo $n$ if $a_1 \not\equiv a_2$ (mod $n$) and $a_2 - a_1 \equiv a_3 - a_2 \equiv \cdots \equiv a_k -a_{k-1}$ (mod $n$). For $k$ odd and $k \geq 3$, we find explicit constnats $\varepsilon_k< 1 - 1/k$ such that for any $n \ne k$ and for any subset $A$ of $[0,n-1]$, if $|A| > \varepsilon_k n$ then $A$ contains a $k$-term arithmetic progression modulo $n$. ($\varepsilon_3 =.5$ and $\varepsilon_5$ is about .77.)
\end{abstract}
\section{Introduction} \label{sec: 1}
For each real number $\varepsilon > 0$ and positive integers $k$ and $n_0$, let $S(\varepsilon, k, n_0)$ denote the following statement.
$S(\varepsilon, k, n_0)$: For every $n \geq n_0$, and for every subset $A$ of $[0,n-1]$, if $|A| > \varepsilon n$ then $A$ contains a $k$-term arithmetic progression.
Then Szemer\'{e}di's theorem~\cite{szemeredi1975} asserts that for every $\varepsilon > 0$ and $k$, there exists a least positive integer $n_0 = n_0(\varepsilon,k)$ such that $S(\varepsilon,k,n_0)$ holds.
One can ask the following quantitative questions. (Answering them, of course, is something else!)
(a) Given $\varepsilon > 0$ and $k$, what is $n_0(\varepsilon, k)$, that is, what is the smallest $n_0$ such that $S(\varepsilon, k , n_0)$ holds?
(b) Given $k$ and $n_0$, what is the smallest $\varepsilon$ such that $S(\varepsilon , k ,n_0)$ holds? (We may denote this smallest $\varepsilon$ by $\varepsilon (k, n_0)$.)
These questions appear to be simplified if for a given $n$ and a given subset $A$ of $[0,n-1]$ we enlarge the set of arithmetic progressions under consideration. Thus we say that $A$ contains a \emph{$k$-term arithmetic progression modulo $n$} if $A$ contains elements $a_0,\dots,a_{k - 1}$ (not necessarily distinct) such that
\[ a_j \equiv a_0 + jd \quad (\textup{mod }n), \quad 0 \leq j \leq k - 1, \]
for some integer $d$ with
\[ d \not\equiv 0 (\textup{mod }n). \]
We can replace statement $S(\varepsilon, k , n_0)$ by the corresponding statement $M(\varepsilon', k, n_0')$, for any real number $\varepsilon'>0$ and positive integers $k$ and $n_0'$, as follows.
$M(\varepsilon', k, n_0')$: For every $n \geq n_0'$, and for every subset $A$ of $[0,n-1]$, if $|A| > \varepsilon' n$ then $A$ contains a $k$-term arithmetic progression modulo $n$.
One can then ask the following questions.
(a') Given $\varepsilon ' > 0$ and $k$, what is $n_0'(\varepsilon , k)$, the smallest $n_0'$ such that $M(\varepsilon', k, n_0')$ holds?
(b') Given $k$ and $n_0'$, what is $\varepsilon'(k,n_0')$, the smallest $\varepsilon '$ such that $M(\varepsilon', k, n_0')$ holds?
In this note we obtain bounds what appear to be the easiest cases of these latter two questions. Given a small $\varepsilon > 0$ (namely $\varepsilon \leq \frac{1}{2}$) and arbitrary $k$, we find a lower bound for $n_0'(\varepsilon, k)$. (Theorem~\ref{thm: 1} below). Given a small $n_0'$ (namely $n_0' = k + 1$) and arbitrary \emph{odd} $k$, we find an upper bound for $\varepsilon' (k, n_0')$. (Theorem~\ref{thm: 2} below).
\begin{remark} \label{remark: 1}
It has been observed in~\cite{brown+buhler1984} that Szemer\'{e}di's theorem is equivalent to the following statemtn: For every $\varepsilon ' > 0$ and $k$, there exists a least positive integer $n_0'$ such that $M(\varepsilon', k, n_0')$ holds.
\end{remark}
(In fact,
\[ n_0' (\varepsilon , k) \leq n_0 (\varepsilon , k) \leq \frac{1}{2} n_0'(\varepsilon/2, k) + \frac{1}{2}. \]
To obtain the second inequality, let $2m \geq n_0'(\varepsilon/2, k)$, and let $A$ be any subset of $[0,m-1]$ such that $|A| > \varepsilon m = (\varepsilon/2)(2m)$. Then regarding $A$ as a subset of $[0,2m - 1]$ it follows from the choice of $2m$ that $A$ contains a $k$-term arithmetic progression modulo $2m$. Since $A$ is a subset of $[0,m-1]$, this $k$-term arithmetic progression modulo $2m$ is in fact a $k$-term arithmetic progression. Hence $n_0(\varepsilon, k) \leq m$.)
\begin{remark} \label{remark: 2}
It is trivial that for any $k $ and $n_0'$, $\varepsilon'(k,n_0') \leq 1 - 1/k$.
\end{remark}
(For if $A \subset [0,n-1]$ and $|A| > (1 - 1/k)n$, then the average value of $|A \cap [i, i + k - 1]|$ is greater than $1 - 1/k$, hence for some $i$, $A$ contains $i,i + 1, \dots,i + k - 1$ (modulo $n$). Note, however, that this argument fails for $\varepsilon(k,n_0)$: $A = \{0,1,3\} \subset [0,3]$ and $|A| > (1 - 1/3)\cdot 4$, but $A$ contains no $3$-term arithmetic progression.)
\section{Results} \label{sec: 2}
From now on, we abbreviate ``$k$-term arithmetic progression" to ``$k$-progression".
\begin{thm} \label{thm: 1}
For $s \geq 2, k \geq 3$,
\begin{equation} n_0'(1/s,k) > \sqrt{2}s^{k/2} - 2s + 1. \label{eq: 1} \end{equation}
\end{thm}
\begin{proof} Fix $s \geq 2, k \geq 3$, and consider the $(m + 1)$-element subsets of $[0,ms]$. Note that $m + 1> (1/s)(ms + 1)$, so that if one of these subsets contains no $k$-progression modulo $ms + 1$, then $n_0'(1/s, k) > ms + 1$.
Given a fixed $k$-progression $P$ (modulo $ms + 1$) in $[0,ms]$, the number of $(m + 1)$-element subsets of $[0,ms]$ which contain $P$ is at most $\binom{ms + 1 - k}{m + 1 - k}$. The total number of distinct $k$-progressions $P$ (modulo $ms + 1$) in $[0,ms]$ is at most $(ms + 1)(ms)/2$. Therefore
\begin{equation} \binom{ms + 1 - k}{m + 1 - k}(ms + 1)(ms)/2 < \binom{ms + 1}{m + 1} \label{eq: 2} \end{equation}
implies
\begin{equation} n_0'(1/s,k) > ms + 1. \label{eq: 3} \end{equation}
When $m + 1 \geq k$,~(\ref{eq: 2}) is equivalent to
\begin{equation} m(m + 1) < 2\cdot \left(\frac{ms - 1}{m - 1} \right) \left( \frac{ms - 2}{m - 2} \right) \cdot \left( \frac{ms - k + 2}{m - k + 2} \right), \label{eq: 4} \end{equation}
and each factor on the right hand side of~(\ref{eq: 4}) is greater than $s$. Therefore when $m + 1 \geq k$,~(\ref{eq: 2}) holnds provided $m (m + 1) \leq 2\cdot s^{k-2}$, which in turn holds provided $(m + 1)^2 \leq 2\cdot s^{k-2}$, or
\begin{equation} m \leq \sqrt{2} s^{k/2 - 1} - 1. \label{eq: 5} \end{equation}
Now when $k \leq \sqrt{2}s^{k/2 - 1}$, we can find an integer $m$ such that $k \leq m + 1 \leq \sqrt{2} s^{k/2 - 1}$ and $m > \sqrt{2} s^{k/2 - 1} -2$, which gives~(\ref{eq: 1}).
Only a small number of pairs $(s,k)$ have $k > \sqrt{2}s^{k/2 - 1}$ (namely $(s,k) = (2,3)$, $(2,4)$, $(2,5)$, $(2,6)$, $(3,3)$, $(4,3))$, and these can be checked separately, giving~(\ref{eq: 1}) in all cases.
\end{proof}
\begin{thm} \label{thm: 2}
Define the numbers $\varepsilon_k$, for odd $k \geq 3$, as follows. Let $\varepsilon_3 = 1/2$. For $k = 2m + 1$, $m\geq 2$, let
\begin{equation} \varepsilon_k = 1 - \frac{k + 1}{k + 2} \left( \sqrt{m^2 + \frac{k + 2}{k + 1}} - m \right). \label{eq: 6} \end{equation}
Then $\varepsilon_k < 1 - 1/k$, and for every $n \ne k$ and every subset $A$ of $[0,n-1]$, if $|A| > \varepsilon_k n$ then $A$ contains a $k$-progression modulo $n$.
\end{thm}
\begin{lemma} \label{lemma: 1}
In proving Theorem~\ref{thm: 2}, we may assume that $n > k$.
\end{lemma}
\begin{proof}[Proof of Lemma~\ref{lemma: 1}]
For $k = 3$, the assertion of the lemma is obviously true. For $k > 3$, one can check that $\varepsilon_k > 1 - 1/(k - 1)$. From this it follows that if $n < k$ and $A$ is any subset of $[0,n-1]$ such that $|A| > \varepsilon_k n$, then $A = [0,n-1]$ and hence $A$ contains a $k$-progression modulo $n$.
\end{proof}
\begin{lemma} \label{lemma: 2}
In proving Theorem~\ref{thm: 2}, we may assume that $n$ is prime.
\end{lemma}
\begin{proof}[Proof of Lemma~\ref{lemma: 2}]
Assume that if $p$ is prime, $A \subset [0,p-1]$, $|A| > \varepsilon_k p $, then $A$ contains a $k$-progression modulo $p$. Now let $n$ be arbitrary, let $A \subset [0,n-1]$, $|A| > \varepsilon_k n$, and let $p$ be a prime divisor of $n$. Identify $[0,n-1]$ with the cyclic group $Z_n$. Then $Z_n$ contains a copy $H$ of $Z_p$, and for some coset $a + H$ of $H$, $|A \cap (a + H)| > \varepsilon_kH$, or
\begin{equation} |(A - a) \cap H| > \varepsilon_k p. \label{eq: 7} \end{equation}
Therefore $A - a$ contains a $k$-progression as a subset of $H$; since $H$ is a subgroup of $Z_n$, this $k$-progression is a $k$-progression as a subset of $Z_n$.
\end{proof}
\begin{remarkk} The same argument shows that in Theorem~\ref{thm: 2}, $Z_n$ can be replaced by an arbitrary abelian group, except for $Z_p \times \cdots \times Z_p$ when $k = p = $prime. In particular, Theorem~\ref{thm: 2} is true even for $n = k$, provided $k $ is not prime.
\end{remarkk}
\begin{proof}[Proof of Theorem~\ref{thm: 2}]
\begin{proof}[Case 1. The case $k = 3$]
Let $p$ be prime, $p > 3$, $A \subset [0,p-1]$, $|A| = \alpha p$, and assume that $A$ contains no 3-progression modulo $p$. We need to show that $\alpha \leq 1/2$.
For each pair $x,x + y$ ($y \ne 0$) of elements of $A$, the (distinct) elements $w_1 = x - y$, $w_2 = x + 2y$ are excluded from $A$, since $A$ contains no 3-progression modulo $p$. (All arithmetic operations here are modulo $p$.)
Also, given distinct elements $w_1,w_2$ in $[0,p-1]$, there are unique $x,y$ ($y \ne 0$) in $[0,p-1]$ such that $x -y = w_1$ and $x + 2y = w_2$.
It easily follows that each excluded pair $\{w_1,w_2\}$ is excluded only once, so that the $\binom{\alpha p}{2}$ pairs of elements of $A$ exclude $\binom{\alpha p }{2}$ distinct pairs $\{w_1,w_2\}$ from $A$. The union of these $\binom{\alpha p}{2}$ distinct pairs of elements has at least $\alpha p$ elements.
Thus $\alpha p = |A| \leq p - \alpha p$, and $\alpha \leq 1/2$, as required.
\end{proof}
\begin{proof}[Case 2. The case $k > 3$]
From now on, for convenience, we abbreviate ``$k$-progression modulo $p$" to ``$k$-progression".
Let $k = 2m + 1$, $m \geq 2$. Let $p$ be prime, $p > k$, $A \subset [0,p -1]$, $|A| = \alpha p$, and assume that $A$ contains no $k$-progression.
We need to show that $\alpha \leq \varepsilon_k$. (One can check directly that $\varepsilon_k < 1 - 1/k$. $\varepsilon_5$ is about 0.77.)
The argument proceeds essentially as in the case $k = 3$:
Each $(k - 1)$-progression contained in $A$ eliminates a pair $\{w_1,w_2\}$ of elements from $A$, and each eliminated pair $\{w_1,w_2\}$ is eliminated exactly once.
Let $t$ be the number of $(k - 1)$-progressions contained in $A$. Then the union of the $t$ excluded pairs $\{w_1,w_2\}$ has at least $w$ elements, where $w$ is the smallest integer such that $\binom{w}{2} \geq t$. Then $w > \sqrt{2t}$, so that $\alpha p = |A| < p - \sqrt{2t}$, or
\begin{equation} (1 - \alpha)^2 p^2 > 2t. \label{eq: 8} \end{equation}
Now we estimate $t$ from below. The set $[0,p - 1] - A$ contains $(1 - \alpha)p$ elements, and each of these belong to exactly $m(p - 1)$ $(k-1)$-progressions. Thus $[0,p - 1] - A$ meets at most $(1-\alpha)pm(p - 1)$ $(k-1)$-progressions. Since the total number of $(k - 1)$-progressions contained in $[0, p -1]$ is exactly $p(p - 1)/2$, it follows that
\[ t \geq p(p - 1)/2 - p(p - 1)(1 - \alpha) m, \]
or
\begin{equation} 2t \geq p( p -1)(1 - (1-\alpha)2m). \label{eq: 9} \end{equation}
Combining~(\ref{eq: 9}) and~(\ref{eq: 8}) gives
\begin{equation} \frac{(1 - \alpha)^2}{1 - (1 - \alpha)2m} > 1 - 1/p. \label{eq: 10} \end{equation}
Since $p \geq k + 2 = 2m + 3$, this gives
\begin{equation} \frac{(1 - \alpha)^2}{1 - (1 - \alpha)2m} > 1 - \frac{1}{2m + 3}. \label{eq: 11} \end{equation}
Using $\alpha \leq 1$, it follows from~(\ref{eq: 11}) that $\alpha \leq \varepsilon_k$ as required.
\end{proof}
\end{proof}
(When $k$ is even, all of the above remains valid except for $\varepsilon_k < 1 - 1/k$. Hence, according to Remark~\ref{remark: 2} above, the application of this method for even $k$ gives no result. Perhaps some modified version of this method will work for even $k$.)
\bibliographystyle{amsplain}
\bibliography{tom-all}
\end{document}