%%%% THIS FILE IS AUTOMATICALLY GENERATED
%%%% DO NOT EDIT THIS FILE DIRECTLY,
%%%% ONLY EDIT THE SOURCE, tom-19/document.tex.
%%%%
%% Standard package list
\documentclass[letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage[top=3cm, bottom=3cm, left=3.5cm, right=3.5cm]{geometry}
\usepackage[onehalfspacing]{setspace}
\usepackage{amsmath,amssymb,amsthm,wasysym}
\usepackage{nicefrac,booktabs}
\usepackage{mathptmx}
\usepackage{cite}
\usepackage[colorlinks=true]{hyperref}
%% Various helpers for Tom's papers
\newcommand{\gs}{\textnormal{gs}}
\newcommand{\ord}{\textnormal{ord}}
\newcommand{\Exp}{\textnormal{Exp}}
\newcommand{\Log}{\textnormal{Log}}
\newcommand{\lcm}{\textnormal{lcm}}
\newcommand{\range}{\textnormal{range}}
\newcommand{\NR}{\textnormal{NR}}
\newcommand{\Mod}[1]{\left(\textnormal{mod}~#1\right)}
\newcommand{\ap}[2]{\left\langle #1;#2 \right\rangle}
\newcommand{\summ}[1]{\sum_{k=1}^m{#1}}
\newcommand{\bt}[1]{{{#1}\mathbb{N}}}
\newcommand{\fp}[1]{{\left\lbrace{#1}\right\rbrace}}
\newcommand{\intv}[1]{{\left[1,{#1}\right]}}
%% Lifted from http://stackoverflow.com/questions/2767389/referencing-a-theorem-like-environment-by-its-name
%% This lets me do things like "Theorem A" and have the references work properly.
\makeatletter
\let\@old@begintheorem=\@begintheorem
\def\@begintheorem#1#2[#3]{%
\gdef\@thm@name{#3}%
\@old@begintheorem{#1}{#2}[#3]%
}
\def\namedthmlabel#1{\begingroup
\edef\@currentlabel{\@thm@name}%
\label{#1}\endgroup
}
\makeatother
% end lift
\newtheoremstyle{namedthrm}
{}{}{}{}{}{}{ } % This last space needs to be there
{\bf\thmname{#1} \thmnote{#3}.}
%% End reference hack
%% Document start
\date{}
\begin{document}
%% Content start
\newtheorem{defn}{Definition}
\newtheorem{fact}{Fact}
\theoremstyle{remark}
\newtheorem*{qstn}{Question}
\newtheorem*{rmrk}{Remark}
\theoremstyle{namedthrm}
\newtheorem{thrm}{Theorem}
\title{Monochromatic Arithmetic Forests}
\author{Tom C. Brown\footnote{Department of Mathematics and Statistics,
91泡芙, Burnaby, British Columbia, V5A 1S6, Canada.
\texttt{tbrown@sfu.ca}}}
\maketitle
\begin{center}{\small {\bf Citation data:} T.C. {Brown}, \emph{Monochromatic arithmetic forests}, Paul Erdos and His
Mathematics (A.~Sali, M. Simonovits, and V.T. S\'os, eds.), Janos Bolyai
Mathematical Society, Budapest, Hungary, 1999, pp.~42--44.}\bigskip\end{center}
\begin{defn}\label{d1} If $A = \{a_10$ are given, then for sufficiently large
$n$, if $S\subseteq P([1,n])$ and $|S| > \epsilon|P([1,n])|$, $S$ must
contain an arithmetic chain of length $k$. Is it true that for
sufficiently large $n$, if $S\subseteq P([1,n])$ and $|S|>\epsilon
|P([1,n])|$, $S$ must contain arithmetic copies of all $k$-vertex
rooted forests?\end{qstn}
\begin{rmrk} Some related results, and additional references, can be
found in \cite{swanepoel+pretorius1997} and \cite{swanepoel+pretorius1994}.
\end{rmrk}
\bibliographystyle{amsplain}
\bibliography{tom-all}
\end{document}